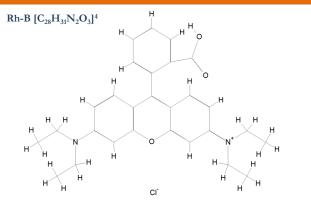
In-silico SMILES-Based Toxicity Prediction of Fluorescent Dye (Rh-B)


Charli Deepak Arulanandam^{1,2} and Hans-Uwe Dahms^{2*}

Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan ²Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan

Introduction: Rhodamine-B (Rh-B) is an important organic fluorescent xanthene class dye. Because of its unique photophysical properties1 and photostability2, Rh-B is a widely used colorant in the plastic industries, textiles and is also well-known as a fluorescent dye applied in organic chemistry and biological studies.³ Nevertheless, Rh-B has been illegally used by sweet markets or bakers as a food colorant in many countries for coloring different confectionery.⁴ It is classified as a carcinogen by IARC in 1978. Few pharmacokinetic and toxicological investigations have been performed since the first pharmacokinetic study on Rh-B in 1961.⁵ Dyes in the aquatic environment are a serious issue for public health, environment and aquatic life and also disposal of dyes from effluents is a major environmental concern for the scientific community and industries. Fluorescent dyes are toxic, carcinogenic and mutagenic for several organisms, also during their degradation.⁶ This study aims to predict the toxic effects of fluorescent dye Rh-B by using in silico tools, such as LAZAR Toxicity Predictions.^a PROTOX^b, and pkCSM - pharmacokinetics^c. In this study ACD/ChemSketch^d, was used to draw and build up SMILES of Rh-B.

ACD/ChemSketch

[CI-].0=C(0)c4ccccc4C=1c3ccc(cc3OC2=CC(\C=CC=12)=[N+](/CC)CC)N(CC)CC

[a] LAZAR Toxicity Predictions, available from: https://nano-lazar.in-silico.ch/predict [b] PROTOX web server, available from: http://tox.charite.de/tox/

[c] pkCSM freely accessible web server, available: http://biosig.unimelb.edu.au/pkcsm [d] ACD/ChemSketch 8.0 Freeware for personal and academic use, available from:

http://www.acdlabs.com/resources/freeware/chemsketch/

CONCLUSION

- Rh-B structure based SMILES build by ACD/ChemSketch used to predict > toxicological properties.
- This fluorescent dye raises mutagenicity in the bacterium S. typhimurium.
- ⊳ Rh-B is toxic to aquatic organisms such as Tetrahymena pyriformis (protozoa) and high acute toxic to minnow (fish).
- Rh-B is carcinogenic to rat, mouse and multiple species/sites of rodents.
- It shows rodent oral toxicity with LD50 values of 887mg/kg by PROTOX
- ۶ It shows rodent oral acute toxicity with LD50: 2.479 mol/kg.
- Rh-B is rat chronic toxicity 1.061 mg/kg bw/day.
- > It is categorized as a hepatotoxic substance by pkCSM. So, Rh-B affect the normal function of the liver.
- Rh-B does not have cardiac (hERG I and II) and skin toxicity.
- Human, MRTD is 0.423 log(mg/kg/day).

pkCSM - pharmacokinetics

Molecule properties		
Descriptor	Value	
Molecular Weight	479.02	
LogP	2.565	
#Rotatable Bonds	7	
#Acceptors	3	
#Donors	1	
Surface Area	206.270	

Toxicity property		
Model Name	Predicted Value	Unit
AMES toxicity	Νο	Categorical (Yes/No)
Max. tolerated dose (human)	0.423	Numeric (log mg/kg/day)
hERG I inhibitor	Νο	Categorical (Yes/No)
hERG II inhibitor	Yes	Categorical (Yes/No)
Oral Rat Acute Toxicity (LD50)	2.404	Numeric (mol/kg)
Oral Rat Chronic Toxicity (LOAEL)	2.767	Numeric (log mg/kg_bw/day)
Hepatotoxicity	Yes	Categorical (Yes/No)
Skin Sensitisation	Νο	Categorical (Yes/No)
T.Pyriformis toxicity	0.684	Numeric (log ug/L)
Minnow toxicity	-0.776	Numeric (log mM)

REFERENCES

[1] Pellosi, D.S., Estevão, B.M., Semensato, J., Severino, D., Baptista, M.S., Politi, M.J., Hioka, N. and Caetano, W., 2012. Photophysical properties and interactions of xanthene dyes in aqueous micelles. Journal of Photochemistry and Photobiology A: Chemistry, 247, pp.8-15.

[2] Zheng, L., Wang, C., Shu, Y., Yan, X. and Li, L., 2015. Utilization of diatomite/chitosan-Fe (III) composite for the removal of anionic azo dyes from wastewater: equilibrium, kinetics and thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, pp.129-139.

[3] Mottram, L.F., Forbes, S., Ackley, B.D. and Peterson, B.R., 2012. Hydrophobic analogues of rhodamine B and rhodamine 101: potent fluorescent probes of mitochondria in living C. elegans. Beilstein Journal of Organic Chemistry, 8(1), pp.2156-2165.

[4] Tatebe, C., Zhong, X., Ohtsuki, T., Kubota, H., Sato, K. and Akiyama, H., 2014. A simple and rapid chromatographic method to determine unauthorized basic colorants (rhodamine B, auramine O, and pararosaniline) in processed foods. Food science & nutrition, 2(5), pp.547-556.

[5] Cheng, Y.Y. and Tsai, T.H., 2017. Pharmacokinetics and Biodistribution of the Illegal Food Colorant Rhodamine B in Rats. Journal of agricultural and food chemistry, 65(5), pp.1078-1085.

[6] Padhi, B.S., 2012. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. International Journal of Environmental Sciences, 3(3), p.940.

ADDREVIATIONS USED			
Rh-B	- Rhodamine B		
IARC	- International Agency for Research on Cancer		
LAZAR	- Lazy structure-Activity Relationships		
PROTOX	- Prediction of Rodent Oral TOXicity		
SMILES	- Simplified Molecular Input Line Entry System		
MRTD	- Maximum Recommended Tolerated Dose		