The variants of Zirconium, Technetium and Neptunium Localization in the First Cycle of NPP High Burn-up Spent Fuel Reprocessing Nickolay D. Goletskiy, Boris Ya. Zilberman, Yuriy S. Fedorov, Alexander S. Kudinov, Alexey P. Krinitsyn, Egor A. Puzikov, Dmitriy V. Ryabkov (Drs), and Alexey A.

Timoshuk (Lead. Eng).

Introduction

NPP spent nuclear fuel (SNF) reprocessing should be environm and commercially admissible and lead to recycling of reger material as well as to minimization of the radioactive was volume. The goals of the reprocessing, originally developed and U recovery for weapons material production now cl considerably on passing to NPP SNF, as the fuel fraction utilized (U and Pu) dropped to 95-97%, while the amount utilized elements increased from 0.05% to 3-5% of the total mass (Table 1). Only < 5% of these elements are hazardou lived radio-nuclides, namely, α -nuclides (TPE, Np) and Tc, of Np, Tc and Zr are notably extractable by diluted TBP difficulties in the 1st cycle of the PUREX process.

Accumulation of ²³²U generating the daughter radioactive se powerful y-emitters limits the time of regenerated U unsl handling to 30 days, making pointless the deep U decontam from FP to higher extent than the level of transporta enrichment plant where it is subjected to required in-line purif So, reprocessing flowsheet should be shrunk to a single complicated extraction cycle in order to reduce the numb volume of process radwaste.

The classic structure of the PUREX reprocessing plant includes not only extraction cycles, but also a great number divisions for intermediate treatment of product or waste strear HNO_3 and H_2O regeneration instead of their dropping to enviro

Zilberman BYa (2000). Application of Purex Process to Highly Burned-Up NPP Fuel in Closed Nuclear Fuel Cycle from the Viewpoint of Long-lived Radionuclide Localization. Radiochemistry. 42:1-14. Bernard C, Miquel P and Viala M (1991). Advanced Purex process for the new reprocessing plants in France and Japan. Proc. 3rd Int. Conf. RECOD'91, Sendai (Japan), AESJ&JAIF. (1):83-86. Fedorov YuS, Zil'berman BYa, Aloi AS, Puzikov EA, Shadrin AYu, and Alyapyshev MYu (2011). Problems of Modernization of Spent Nuclear Fuel Extraction Processing. Rus. J. Gen. Chem., 81:1932-1948. Zilberman BYa, Fedorov YuS, Rimskiy-Korsakov AA, Bibichev BA, Chubarov MN, Alekseev PN (2013). Possibility of using a mixture of enriched regenerated uranium and regenerated plutonium for 100% VVER-1000 core fuel load. Atomic Energy. 113:383-391. Goletskiy ND, Zilberman BYa, Fedorov YuS, Kudinov AS, Timoshuk AA, Puzikov EA, Krinitsyn AP and Ryabkov DV (2014). Ways of Technetium and Neptunium Localization in Extraction Reprocessing of Spent Nuclear Fuel from NPPs. Radiochemistry. 5:501-514.

Khlopin Radium Institute (ROSATOM State Corporation), St-Petersburg, Russia

	Table 1. The in	fluence of	SNF bur	n-up o	on the conte	ent of					
	actinides and r	nultivalent	fission	produ	icts (5 yeai	storag	ge) ³]				\sim
mentally		Element cor	ntent at bu	rn-up (G	W*days/t HM)				_ Σ /	
enerated	Element –	Gramms per 1 tonne HM Moles J			per 4,2 kmol (1 t HM)		*			Ĩ.	\sim)
ste final	(<i>isotope</i>)	0,5 50	70	0,5	50 7	0	K			- 17	²²⁸ Th
d for Pu	²³² U	- 0,001	2 0,0065	-	-		S 2				
handed	$\frac{235}{236}$	<u>6550</u> <u>8800</u>	<u>2640</u>	<u>27,5</u>	$\frac{37,5}{26}$ $\frac{11}{21}$	<u>,2</u>	ă			1/	
nangeu	Nn	2/0 61 /0 0.5 720	7530 850	1,15	26,1 31 3.0 3	,9 6				$\left(\right)$	
	Pu	0,3 720 500 1200	13210	2.1	50 5	.5				/	
of non-	Am	0,5 630	810	0,002	2,6 3	, 3	1 -			/	
tal SNF	Sr	18 1 530	2640	0,20	17 3	0				. 12	
us Iona-	Zr	66 5 380 52 5 0 2 5	7200	0,71	60 7	9	²³⁷ U			<i>ב</i> ∡	Th
of which		53 5035 16 1140	1/100	0,56	52 7 115 1/	4		and the second s			
		5 330	450	0,10	2.6 3	5	0 +				
causing	Ċs	68 3725	5150	0,50	28 3	9	0.01	0.1	_ 1	_	10
	Ba	31 2 505	3490	0,22	18 2	5			Storag	e time, ye	ears
eries of	$\mathbf{RE} + \mathbf{Y}$	220 ~1500	0 ~21000	1,3	103 14	1 <u>5</u> F	ig. 2. EDR o	f U proc	duct du	ring sto	orage
shioldod	SFP	550 ~5070	5 ~71500	4,6	430 60)6 (NPP SNF bu	rn-un 50	∩ G\//*¢	1/t 5 v	ears coo
minotion	Table 2. Tes	ted varian	ts of 1 st (cycle f	lowsheet	(
					Fle	owsheet	variant				
ation to		DT 1 / Г							Supor	DUROV	
fication.	Product	RI-I (P	A Waya	к)	Test	RT-2	PDCall	VICC	Super	pulex	RFMIX
e more		1	2	3	1001		1	2	Nº 1	Nº 2	
per and		Nº 1	2	3	4	5	6	7	8	9	10
	Numb. of units	4	4	5	5	7	6	6	6	6	6
(Fig. 1)	Raffinate	Zr	Zr, Tc	Zr	Np, Zr/Mo	-	-	-	-	-	-
of bulkv	Strip 1	-	-	-	Tc	Zr	Zr	Zr	Zr, Tc	Zr, Tc	Zr, Np
ms with	Strip 2	Pu, Np, Tc	Pu, Np	Pu, Tc	Pu	Pu	Pu, Np, Tc	Pu, Np	Pu (U)	Np	Pu(U)
nment	Strip 3	-	-	Np	-	Np. Tc	Barrier	Tc	Np	- Pu+U	Tc
	Ubackwash							U		U(Pu)	

IDUINY					10	<u> </u>			
ns with	Strip 2	Pu, Np, Tc	Pu, Np	Pu, Tc	Pu	Pu			
nment.	Strip 3	-	-	Np	-	Np, Tc			
	U backwash	U	U	U	U	U			
le 3 Product composition and purification factors for the flowshee									

Table 3. Product composition and purification factors for the flows SNF burn-up 67 GW*d/t, 5 years cooling

	Product composition									Purification	
roduct	HNO ₃ , mol/L	U, g/L	Pu, mg/L	Np, mg/L	Tc, mg/L	Zr, mg/L	Mo, mg/	b,g MBq/L	U	Pu	
Feed	1,8	424	5700	400	1560			3,8*10 ⁶	-	-	
affinate	0,8	<0,01	3	1	42	270	370	3,7*10 ⁶	> 10 ⁴	> 10 ³	
Tc strip	4,5	<0,01	5	3	540	<10	220	9200	> 10 ⁴	> 10 ³	
u strip	1,3	<0,1	6100	<5	-	90	54	100	> 10 ⁴	99%	
p strip	0,75	<0,01	10	490	-	<2	-	10	> 10 ⁴	>103	
alwach	0.2	60	-0 1	0 1		_ 0		10 (²³⁷ U)	00%	∖1 ∩4	
ackwasn	0,2	- 00	<0,1	U , I		<z< th=""><th></th><th>0.03</th><th>77/0</th><th>->10.</th></z<>		0.03	77/0	->10.	

Table 4. Product composition for the flowsheet REMIX (Nº10) Simulant feed solution

oduct	Product composition									
	HNO ₃ , mol/L	U, g/L	Pu, mg/L	Np, mg/L	Tc, mg/L	Zr, mg/L				
eed	2,0	510	220	200	660	1200				
finate	1,0	<0,01	<0,1	0,3	20	120				
p strip	1,6	<0,01	0,1	410	80	1900				
strip	0,6	<0,01	312	0,5	1,2	<10				
strip	0,8	0,12	1,1	<0,1	630	-				
ckwash	0,1	70	<0,01	<0,1	<1	-	Fig. 3			

The turn to "peaceful use of atomic energy" has lead to the change in reprocessing goals and therefore to that in flowsheets, especially in the head-end of the process, limited by behavior of precipitate-forming and multivalent elements, such as Zr, Tc and Np. The problem of their localization within the framework of the 1st extraction cycle of the Purex process could be solved by several ways. Table 2 shows in which process product the problem element are going out from the cycle in commercial and/or tested project flowsheets. It can be either product (U, Pu) streams or selective strips. For example, Tc could be dropped to the raffinate in RT-1 process (Fig. 3) or to Zr&Tc strip in SuperPurex-1 (6-unit process, Nº8). The large volume of this strip made the flowsheet as a whole unsuitable for PDC project. The great expectations are connected with REMIX flowsheet (No10) since it makes possible to obtain U and Pu products free of Np and Tc as well as from each other providing the 2nd U cycle connected with REIVIX howsheet (Nero) since it makes possible to obtain a greater representation from actinides (Pu traces and Np). useless (Fig. 4b) It is the opposite approach to UP-3 flowsheet (Fig. 4a) where the 2nd U cycle is carried out only for purification from actinides (Pu traces and Np). References

bling)

et SuperPurex-1 (Nº8).

Tables 3 and 4 confirm the possibility of Np localization before and after Pu stripping with the opposite Tc withdrawal. The data were obtained on KRI experimental rigs in "hot" chambers and boxes. The last flowsheet (No10) is being implemented into PDC design for production of REMIX* fuel made of dioxides of regenerated Pu and enriched regenerated U, suitable for uploading of 100% WWER-1000 active zone. At the same time the process provides the HLW evaporation without Zr/Mo and Ba(NO₃)₂ precipitate formation (Fig. 5). It is possible due to evaporation of Zr-containing waste strip separately from Mo-containing HLW as well as because of lower acidity of the latter. This regime is provided in turn by dissection of extraction and scrubbing zones of the head unit as well as by increase of U content in the warm feed solution.

It should be noted that no withdrawal of Np together with Tc, as well as Pu, Np, Zr and Tc separately to generally different products could be achieved in the frame of six-unit extraction flowsheet. Providing the precipitation-free HLW evaporation requires the hard multilevel structurization and optimization of process chain as a whole starting from the head-end process steps – carrying on traditions of the old ORNL and HW schools.

*REMIX is a fuel fabricated as a mixture of regenerated Pu and enriched regenerated U with some addition of natural enriched U, equipotential to standard PWR (BWR) fuel and suitable for uploading the full PWR (BWR) reactor zone to achieve maximal burn-up and disposal without reprocessing.

> 2 249266 (2005); 2372279 (2009); 2454741 (2012); 2454740 (2012; 2454741 (2012); 2454742 (2012); 2473144(2012); 2535332 (2014); 22537013 (2012); 22561065 (2015); 2574036 (2016).

ROSATOM

Results and discussion

Patents RU: