The Minkowski-Lorentz space and the spheres space: a survey

J. P. Bécar, L. Druoton, L. Fuchs, L. Garnier, R. Langevin, G. Morin jean-paul.becar@univ-valenciennes.fr (LAMAV-CGAO, CNRS 2956), (lucie.druoton,remi.langevin)@u-bourgogne.fr (IMB UMR CNRS 5584), lionel.garnier@u-bourgogne.fr (LE2i, UMR CNRS 6306), Laurent.Fuchs@univ-poitiers.fr (XLIM-SIC, UMR CNRS 7252), Geraldine.Morin@irit.fr (Laboratoire IRIT, UMR CNRS 5505)

Abstract

This document deals with the Computer Aided Geometric Design with a short presentation of the Minkowski-Lorentz space. This space generalizes to \mathbb{R}^5 the one used in the relativity theory. The Minkowski-Lorentz space offers a more intuitive writing of a sphere given by a point, a normal vector at the point and its curvature. It also eases the use of canal surfaces thus represented by curves. The quadratic computation in \mathbb{R}^3 becomes linear in that space. The use of spheres, canal surfaces and their particular case known as Dupin cyclides is illustrated in a schematic seahorse. The seahorse applies the \mathbb{G}^1 connection in the Minkowski-Lorentz space.

Oriented spheres and Pencils

An oriented sphere S with centre Ω and radius r > 0 satisfies the relationship $\Omega M = \rho N$ with the rule $\rho = r$ (resp. $\rho = -r$) if the unit normal vector N to the sphere at point M is getting outside (resp. inside). The power of the point M to the sphere S is defined by $\chi_S(M) = \Omega M^2 - \rho^2$. The set of points solution of $\lambda_1 \chi_{S_1}(M) + \lambda_2 \chi_{S_2}(M) = 0$ is called the spheres pencil defined by S_1 et S_2 .

There kinds of pencils exist, a circle based pencil, a tangent spheres pencil, a limited points pencil.

The Minkowski-Lorentz space

The quadratic form of Lorentz is defined on the basis $(\overrightarrow{e_o}; \overrightarrow{e_1}; \overrightarrow{e_2}; \overrightarrow{e_3}; \overrightarrow{e_\infty})$ by $\mathcal{Q}_{4,1}(x_o, x, y, z, x_\infty) = x^2 + y^2 + z^2 - 2x_o x_\infty$. The light cone C_l satisfies the equation $x^2 + y^2 + z^2 - 2x_o x_\infty = 0$ in the frame $(O_5; \overrightarrow{e_o}; \overrightarrow{e_1}; \overrightarrow{e_2}; \overrightarrow{e_3}; \overrightarrow{e_\infty})$. The unit sphere Λ^4 with centre O_5 in \mathbb{R}^5 is given by:

$$\Lambda^{4} = \left\{ \sigma \in \mathbb{R}^{5} \mid \mathcal{Q}_{4,1} \left(\overrightarrow{O_{5}\sigma} \right) = \overrightarrow{O_{5}\sigma}^{2} = 1 \right\}$$

It represents the oriented spheres and planes of \mathbb{R}^3 . A sphere or a plane S is represented by a point σ of \mathbb{R}^5 .

Figure 1: The Minkowski-Lorentz space

Linear pencils of spheres on Λ^4

On the unit sphere Λ^4 any pencil of sphere is represented by the intersection $\mathcal{C} = \Lambda^4 \cap \mathcal{P}$ of a plane called 2-plane \mathcal{P} passing through O_5 . \mathcal{C} is a unit circle seen differently depending on the type of plane.

- If \mathcal{P} is a space-like plane that is $\forall \overrightarrow{u} \in \overrightarrow{P}$, $\overrightarrow{u}^2 > 0$ then \mathcal{C} is drawn as an ellipse(Fig.3.(a)). The set \mathcal{C} represents a based circle sphere pencil where all spheres get a common circle.
- If \mathcal{P} is a light-like plane that is $\forall \overrightarrow{u} \in \overrightarrow{P}$, $\overrightarrow{u}^2 = 0$ and \mathcal{P} is parallel to a hyperplane tangent at \mathcal{C}_l . (Fig.3.(b)) Then the set \mathcal{C} is drawn as two straight lines symmetric wrt O_5 . All spheres in the pencil are tangent at a point.
- If \mathcal{P} is a time-like plane that is $\forall \overrightarrow{u} \in \overrightarrow{P}$, $\overrightarrow{u}^2 < 0$ then \mathcal{C} is drawn as a hyperbola and forms a limited points pencil. (Fig.3.(c))These points are obtained from the light directions of \mathcal{P} .

Figure 2: The representation of the three spheres pencil types on Λ^4

Canal surfaces on Λ^4

The envelop of a one-parameter set of oriented spheres in \mathbb{R}^3 defines a canal surface. The cones and the Dupin cyclides are known examples of canal surfaces of degree 2. On Λ^4 , any curve $t \to \sigma(t)$ represents a canal surface. Its characteristic circles are obtained by the intersection of 2 particular spheres (Fig 4).

Figure 3: A Dupin cyclide on Λ^4 (left) on \mathbb{R}^3 (centre) and seahorse (right)

On Λ^4 the circle C_1 represents a Dupin cyclide. The tangent vector at the curve on point $\sigma(t_0)$ is given by $\frac{d\sigma}{dt}(t_0)$. The characteristic circle of the Dupin cyclide is provided by the intersection of the two spheres $S(t_0)$ and $S(t_0)$. These spheres are represented in Λ^4 by $\sigma(t_0)$ and $\sigma(t_0)$. The last sphere is obtained by the intersection between the half line O_5 ; $\frac{d\sigma}{dt}(t_0)$ and Λ^4 . The Figure 5 shows two cyclides from Λ^4 to \mathbb{R}^3 .

Figure 4: The same representation, on Λ^4 of a Dupin cyclide and of a circular cone: the implementation is the same with or without the point at infinity of \mathbb{R}^3 (M_2 is send to the infinity), the modeling is the same as envelope of spheres or planes (Dupin cyclide or circular cone).

Conclusion: The Minkowski-Lorentz space offers a new way to handle curves and surfaces for CAD purposes making the computation easier. Algorithms for G1 joins, not given here, are used to sketch a seahorse as example.

References:

- [1] BÉCAR J. P., DRUOTON L., FUCHS L., GARNIER L., LANGEVIN R, MORIN G.: Espace de Minkowski-Lorentz et espace des sphères: un état de l'art. In G.T.M.G. 2016 (Dijon, Mars 2016). [2] GARNIER L., DRUOTON L., BÉCAR J. P.: surfaces canal et courbes de Bézier rationnelles quadratiques. In G.T.M.G. 2016 (Dijon, Mars 2016).
- [3] GARNIER L., BÉCAR J. P. : Mass points, Bézier curves and conics: a survey, http://ufrsciencestech.u-bourgogne.fr/~garnier/publications/adg2016/, Proceedings of ADG 2016