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In this study, a variety of calciumsulfo aluminate (CSA) cement mortar systems are examined to be used
for preplaced aggregate concrete. Contrary to Portland cement, CSA cement has a large proportion of
minerals such as calciumsulfo aluminate (Ye’elimite) and di-calcium silicate (belite). The production of
CSA cement clinkers consumes a relatively lower amount of limestone and can be operated at a lower
temperature, which consequently requires less energy and reduces CO, emission than the production of
Portland cement clinkers. This study employs two kinds of chemical admixtures, setting retarders and
redispersible polymer powder, which primarily affect the workabllity and long term durability properties,

respectively. This study reveals the strength development process of CSA cement mortars by employing
various microstructural analyses. The strength development is comprehensively investigated in relation
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to the hydration reaction with varied ages.

Test Variables & Raw Materials

Table 1 — Mix Proportions of Mortars and Hardened Cement Pastes (HCP)
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Citric acid (00-015-0985)
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Mortar Mixture precursors (unit: kg/m?) Cp Mixture precursors (unit: kg/m?)
Retarder Retarder

name Water Mortar Polymer A 5 name | Water Cement Polymer A 5
M-0-N 339 1785 0.0 0.00 @ 0.00 B-0-N 512 1346 0.0 0.00 @ 0.00
M-0-Y 339 1785 0.0 1.43 | 1.07 B-0-Y 512 1346 0.0 2.15  1.62
M-2-N 339 1785 17.9 0.00 @ 0.00 B-2-N 512 1346 26.9 0.00 @ 0.00
M-2-Y 339 1785 17.9 1.43 | 1.07 B-2-Y 512 1346 26.9 2.15 1.62
M-6-N 339 1785 53.6 0.00 @ 0.00 B-6-N 512 1346 80.8 0.00 @ 0.00
M-6-Y 339 1785 53.6 1.43 | 1.07 B-6-Y 512 1346 80.8 2.15 1.62
M-10-N | 339 1785 89.3 0.00 @ 0.00 B-10-N 512 1346 | 134.6 0.00 @ 0.00
M-10-Y @ 339 1785 89.3 1.43 | 1.07 B-10-Y 512 1346 | 1346 2.15 1.62
Raw CSA cement Retarder A Retarder B
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Zinc acetate (00-033-1464)
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Figure 1 — Raw CSA Cement XRD
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Figure 2 — Retarder A XRD

Table 2 — Oxide Composition of CSA Cement
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Figure 3 — Retarder B XRD

Table 3 — Elemental Composition of Polymer Powder
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Results: Compressive Strength
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Figure 4 — Compressive Strength
(w/o Retarder)
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Figure 5 — Compressive Strength
(w/ Retarder)

Oxide (unit: wt. %)

Element (wt.%)

CaO SO, SiO, AlLO, MgO

Fe,O,

Others
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Nitrogen
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v Test plan: 1) mortar: compressive strength test (50 mm cube specimen), 2) H
sand). SEM/EDS, MIP, XRD analyses

v'Curing age: 2 h-90 d (early —

v Raw CSA cement: much calcium sulfate (anhydrite) and ye’elimite phase giving early

long term)

age strength achievement (Figure 1 & Table 2)
v'Retarder A & B: 1) Citric acid, 2) Zinc acetate (Figure 2 & 3)

v'Redispersible polymer powder: 1) red color, 2) large portion of carbon according to

elemental analyzer (Table 3)
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Figure 6 — Cumulative and Log Differential Intrusion
(B-0-N, B-10-N at 2 h, 3 h)
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Figure 7 — Cumulative Intrusion with Varying Polymer (1~60 d)

0.001 0.1 10
Pore Size Diameter (log) (pm)

(a) w/o Retarder

A GS G5 [

: ] . lcs

. e Ec35 A
B-0-N_&0day
%J‘LMLU‘{ 'MMMLUM

"

B-10-Y_60day

B-0-Y_lday B-10-Y_7day
M
1A
A
| \LJ

M

M B-10-Y_lday
d

A M
F

MW‘?M )

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||

C;5
A B-10-Y_3h

|

'l

l }
WJJM

! ! Raw CSA Cement l ! Raw CSA Cement

70 10 20 30 40 50 60 70 10 20 30 40 S0 60 70
Position [°2Theta] (Copper (Cu)) Position [*2Theta] (Copper (Cu))

(b) B-0-Y, B-10-Y (c) B-10-Y
Figure 8 — XRD Results of HCPs
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v' At early ages less than 3 h, the use of retarders considerably

restrained the hydration (Figure 8), however, it drastically reduced
the porosity and average pore diameters along with the increasing
polymer dosage at 60 days of curing (Figure 7).

after 90 days.
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Flgure 9 — SEM/EDS Results
% .| v After 1 day, hydration
products like ettringite (AFt)
and Al-rich CSH (A-CSH)

W phase were detected.

S i S| v Much carbon elements

~ %  were detected at the Al-
rich hydration product
region in the specimens
with polymer powder,
which was confirmed by
EDS spot analyses.

v The distribution of polymer
powders was primariliy
located along the concrete
ITZ, which is a critical
zone affecting mechanical
and durability properties of
the concretes (Figure 10).
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Flgure 10 — SEM/EDS Results of Concrete ITZ with M-10- N

Summary & Conclusions

1. Both polymer and retarders additively delayed the setting/hydration of cement at

early age. Meanwhile, the mortars with retarders generally acquired higher
compressive strengths than those without retarders after 28 days.

2. At early age less than 3 h, the inclusion of polymer made macro-pores and higher

porosity of CSA cement pastes due to the surfactant effect of polymer powder.

3. At the age of 60 days, more polymer powder induced smaller pore size and lower

porosity of CSA cement pastes, which indicates the improvement of long-term
durability.

4. A majority of polymer powders were located along the concrete ITZ, which was

observed by the elemental distribution of carbon, suggesting a favorable
modification towards durable concretes.
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