2nd International Conference and Exhibition on

Mesoscopic and Condensed Matter Physics - 2016

October 26-28, 2016, Chicago, Illinois, USA

SPIN WAVE DESCRIPTION OF ULTRACOLD 2D PARAMAGNETIC CRYSTAL

Kirill Tsiberkin, Tatyana Belozerova¹, Viktor Henner^{1,2}

Perm State University, Perm, 614990, Russia
University of Lousville, Lousville, 40292, KY, USA
* kbtsiberkin@psu.ru

INTRODUCTION

- The spin-wave approach is applied to the macroscopic properties calculation of the 2D paramagnetic is under low temperature and strong external magnetic field.
- The square and honeycomb lattices are considered:

- The external field is perpendicular the lattice or parallel the crystal axes [10] or [11].
- The node spins deviates from the field direction and form the spin waves due to dipole pair interaction:

SPIN WAVES DISPERSION

• The spin-waves energy surfaces for the cases when the field is orthogonal to the lattice (left) and parallel to it (along [10]-axis, right). Energy rises from black to white:

MACROSCOPIC PROPERTIES

• The specific heat C_{SW} (curves 2, 3) is calculated:

• It differs from the Schottky law C_{SH} (curve 1) and can be found at temperatures <0.01 K.

 ω_L is the Larmor frequency;

SPIN DYNAMICS SIMULATION

- The spin-wave model is checked by direct numerical simulation of the 2D spin system under orthogonal magnetic field.
- The dipolar energy time dependence and its' Fourier spectrum:

• Average dipolar energy, its' deviation and spin wave spectrum interval:

$$E_{\scriptscriptstyle d}\approx 3.2NS^2\,p_{\scriptscriptstyle d}\,,\quad \Delta E_{\scriptscriptstyle d}\approx 6.4Sp_{\scriptscriptstyle d}\langle n\rangle,$$

$$E_{SW} \in \left[\hbar \omega_L \left(1 - \frac{3}{2} S p_d \right), \hbar \omega_L \left(1 - \frac{1}{2} S p_d \right) \right].$$

N is total spin number in lattice, $\langle n \rangle$ is average number of spin deviations per node, and p_d = dipolar pair energy / $\hbar \omega_L$

• The analytics matches the simulation data.

CONCLUSION

- The spin-wave approach is applicable in pure paramagnetic crystals.
- The external field direction permits to control material properties.