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Abstract
Biological data are very often produced in different non-comparable batches. For data
with repeated measurements and for longitudinal data the correlated nature of the samples
must be considered also in the procedure for the removal of the batch effects. Current
literature on the removal of batch effects however is mainly concerned with the analysis
of experiments having an independent sampling of the subjects. We have developed a
procedure based on a linear mixed model to remove the batch effects from correlated data.
Our procedure provides a filtered data set that can be used for further analyses.

Method
The original data have been modeled through the mixed model:

yij = Xiβj + Zibij + εij (1)

• Xi is a ni × p model matrix for the fixed effects; Xi = [Xc
i X

b
i ] where Xc

i is the ni × pc
matrix for the comparisons of interest, Xb

i is the ni × pb matrix for the batch effects

• βj is a vector of fixed-effect coefficients (with components βc
j and βb

j respectively)

• Zi is a ni × q model matrix for the random effects

• bij is a vector of (normal) random-effect coefficients and εij is a vector of (normal)
errors

The filtered dataset is given by:
y∗ij =

(
yij −Xb

i β̂
b
j

)
(2)

Simulation Results
Removal of batch effects from simulated longitudinal data
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Simulation Settings
• 2 conditions: e.g. treatment vs control

• 2 batches (the batch effect is equal to
one)

• total sample sizes: 40, 60, 80, 100 (the
samples are equally distributed among
conditions and batches)

• k = 5 time points

• 1000 variables (100 differentially ex-
pressed; the location shift is one)

• 3 possible structures for the covari-
ance matrices (Autoregressive, Com-
pound Symmetry and Toeplitz)

• test to compare the two conditions:
two-sample Hotelling’s T-squared test

• FDR controlled at 0.05 level (BY
method)

• comparison of the proposed method
(Longitudinal BER) with the ARSyN
method (proposed in literature)

Conclusions
ARSyN has the best power performance but at the price of a false discovery rate that is
much higher than the chosen threshold of 0.05. Our method instead is able to keep the
false discovery rate below the established threshold and the power rapidly increases with
the sample size. This different performance is expected because the method proposed in
this paper is designed to explicitly use the information about the batches while ARSyN is
trying to remove unknown technical variation. Another interesting feature is that ARSyN
shows a false discovery rate that increases with the sample size. While the application of
ARSyN is particularly suited for data with unobserved technical variation, when observed
batch effects are present it can lead to a systematic bias and the above method has to be
preferred.
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Technical Note
In the above figure, due to computational is-
sues, the estimated FDRs of two structures
are not reported (see Longitudinal BER,
sample size 40).


