

Novel and Versatile Solid-State Chemiluminescence Sensor Based on TiO₂-Ru(bpy)₃2+ Nanoparticles for Pharmaceutical Drugs Detection

Entesar Al-Hetlani, Mohamed O. Amin and Metwally Madkour

Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060

* Tel.:+965-24987965

e-mail address: <u>mohamed.o.amin@hotmail.com</u>

Introduction

A solid-state TiO_2 -Ru(bpy)₃²⁺ hybrid NPs as a novel chemiluminescence (CL) sensor for analyte detection as oppose to electrogenerated chemiluminescence (ECL).

Objectives

- Optimisation of the new detection system.
- Detection of two pharmaceutical drugs: imipramine and promzaine.

Figure 1: N_2 -isotherms obtained for all samples can be ascribed as type IV. The hysteresis loop can be classified in the middle between H2 and H4 types, indicating mesoporous structure with slit-shaped

Washing

dry overnight

under vaccum

Table 1: N_2 sorpometry measurements in revealed that the incorporation and the concentration of $Ru(bpy)_3^{2+}$ with TiO₂ NPs caused a detrimental effect on the specific surface area of the hybrid NPs.

NPs	Pore size (nm)	Pore volume (cm ³ /g)	Surface area (m²/ g)
TiO ₂	3.12	0.15	197.8
Diluted TiO ₂ -Ru(bpy) ₃ ²⁺	2.18	0.081	149.6
Concentrated TiO ₂ -Ru(bpy) ₃ ²⁺	2.94	0.027	36.9

pores.

R = 0.9962 35000 30000 CL Intensity, A.U. 25000 20000 15000 10000 5000 90 100 110 10 20 30 50 60 70 80 Conc, pM

Figure 3: Detection of imipramine with linear range of 1-100 pM and LoD of 0.1.

Figure 4: Detection of promazine with linear range of 1-100 pM and LoD of 0.5.

Conclusion

A simple, rapid and low-cost detection system based on solidstate CL as opposed to ECL has been lucratively developed.

The TiO₂-Ru(bpy)₃²⁺ NPs have been prepared, characterised and used for an enhanced CL detection of imipramine and promazine.

Figure 2: Raman spectrum of plain TiO_2 NPs was dominated by four active modes detected at 150, 402, 512 and 636 cm⁻¹. However, additional peaks at 1021, 1168 and 1353 cm⁻¹ were observed in TiO₂-Ru(bpy)₃²⁺ NPs spectra, which can be attributed to the presence of Ru(bpy)₃²⁺ in the TiO₂ NPs.

Acknowledgments

This work was funded by Kuwait University, project No. SC02/17 and SC06/16. Special thanks to RSPU Facilities No. (GS 01/01, GS 02/01, GS 03/01 and NUERS (srul 01/13)