
4.1. Model Equations:

4.1.1. Energy Transport Equation:
(1)

4.1.2. Vorticity Transport Equation:
(2)

4.1.3. Stream Function Equation:
(3)

4.1.4. Components of the Velocity:

(4)

The dimensionless vorticity is defined by:

4.2. Initial and boundary conditions:

➢ The initial conditions               are :

➢ The boundary conditions            are : 

✓ Top wall:

(4a)

✓ Bottom wall:

(4b)

✓ Right and left wall:

(4c)

The condition: at the bottom wall arises as a

consequence of constant heat flux q".

Where Re, Pr and Ri denote, respectively, Reynolds, Prandtl and

Richardson numbers and the dimensionless variables are defined

as:

Where ε is the dimensionless length of the heat source.
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The physical model considered here is shown in Figure 1; which

is a square cavity filled with air. The vertical walls are maintained at

a constant cold temperature TC and move simultaneously with an

upward constant velocity V0. A heat source is located at the

medium of the lower wall of the cavity having a length L equal to

the fourth fifth of that of the cavity and subjected to a constant heat

flux q". The other walls are supposed to be adiabatic.
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The mirror-point technique due to Leonar [3] was used to

maintain the fourth-order centered scheme of the first and second

spatial partial derivatives in the grid points adjacent to the walls.

An iterative procedure based on successive Non Linear Over

Relaxation method (NLOR) [4] was used to solve the discretized

stream function Eq. (3) in each time step of Runge-Kutta

procedure. The FORTRAN language was elaborated like a

calculation program. The iterative procedure is stopped when the

maximum relative change in stream function between two

consecutive iterations is less than 10-6.

The dimensionless local and average Nusselt numbers of the hot

part of the bottom wall are defined, respectively by Guo and Sharif

[2] :

The average Nusselt number (Nuav) is integrated using Simpson’s

rule.

5.2. Choice of the grid:

In order to make the numerical solution independent of the step

values, we preceded different simulations, by comparing the

values of the average Nusselt number with Ri = 10, Re = 100 and

Pr = 0.71. We noted a weaker difference between the values of

the average Nusselt number, determined with a grid of 81x81,

101x101, 161x161 and of 201x201 according to the following

table 1:

Table 1: Comparison of the average Nusselt number for various 

grid dimensions.

These comparisons allow us the choice of the grid (101x101)

because it provides a good compromise between the duration of

the computing time and the precision of these calculations.
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Grid Average Nusselt number Relative error in %

201x201 5.68913 -----

161x161 5.68334 0.10 

101x101 5.66761 0.40 

81x81 5.65734 0.56 

Figure 2: Isotherms for Ri = 15.6 on the left and Ri = 15.7 on the 

right.

6.2. Streamlines contour:
These contours are shown as iso-currents in Figure 6 for the

two Richardson number values ​​considered. For Ri = 15.6, the flow

consists of two symmetric main cells because the boundary

conditions are symmetric. A bifurcation towards an asymmetric

flow regime characterized by the sudden appearance of two main

but dissymmetrical cells is demonstrated when the value of this

same parameter increases by just 0.1 (Ri = 15.7). The two contra-

rotating cells of different shapes and intensities are observed, the

first, counterclockwise, occupying two thirds of the cavity and the

second clockwise on the left.

Figure 3: Streamlines for Ri = 15.6 on the left and Ri = 15.7 on 

the right.

The study of the movement of a fluid in mixed convection in the

cavities is frequently encountered in nature and in different

industrial systems. This movement results from complex

interactions within this medium (fluid) or between different media

as soon as there is a temperature gradient. This interaction is

responsible for the resulting diversity of fluid flows (the bifurcation),

such as several studies both numerically and experimentally

concerning this phenomenon of changing the very nature of the

flow in different geometric configurations. natural convection

regime, forced or mixed have been reported in the literature.

The present study differs from Aydin and Yang [1] and Guo and

Sharif [2] in that here the direction of the displacement of the

sidewalls are reversed thus creating a competition between the

forced convection and the natural Rayleigh-Bénard convection.

Therefore, it is interesting to establish the flow pattern and to

predict the various critical values of the Richardson number for the

occurrence of loss of symmetry and bifurcations, if these are

indeed present in the fluid flow.

The main purpose of this study is to determine the different

characteristics of the flow in this cavity.
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7. CONCLUSION

A mathematical model to simulate mixed convective heat

transfer in a two-dimensional square cavity and the associated

computer coding has been developed. The model is applied to

analyze mixed convection in a square cavity where the cold

isothermal vertical sidewalls are moving with constant upward

velocity and are subjected to a cold temperature. A constant flux

heat source is placed at the bottom wall. The moving sidewalls

are an idealization of cold air jet blown across the cavity. The

cooling airflow caused by the shearing action of the moving

sidewalls interacts with the buoyancy-driven flow due to the heat

source at the bottom. The other parts of this cavity are considered

adiabatic. The preliminary results show the transition from a

structure to two strictly symmetric cells for a value of the

Richardson number equal to 15.6 to two asymmetric cells

structure for a value of the same number equal to 15.7.

The working fluid is chosen as air with Prandtl number, Pr = 0.71

and Reynolds number, fixed at 100. The normalized length of the

constant flux heat source at the bottom wall, ε, is equal to 0.8, with

a step of the non-dimensional time fixed at 10-4.

The bifurcation of the regime of the flow in mixed convection

was highlighted for Richardson numbers equal to 15.6 and 15.7.

The results are presented in the forms of the flow and temperature

fields (streamlines contour and isotherms contour) and the

evolution of the average Nusselt number.

6.1. Temperature contours:
These contours are represented in figure 2, for Ri = 15.6, we

note that a thermal stratification exists near the heated part. The

upward movement of the side walls drives the fluid layers adjacent

to the walls upwards by the viscous forces; we also notice that the

cold temperature prevails throughout the upper part of the cavity.

In fact, the low heat flows recovered by the fluid from the heat

source are directly evacuated through the lower part of the vertical

walls, whereas for Ri = 15.7. We find that the distribution of the

temperature in the cavity is mainly characterized by the loss of the

symmetry. The heat recovered from the heated part of the cavity is

transported mainly by the right wall of the cavity.

Figure 1: Schematic diagram of the physical model.

The mixed convection phenomena to be investigated here are

described by the complete Navier-Stokes and energy equations

for two-dimensional laminar incompressible flow. The viscous

dissipation term in the energy equation is neglected and the

classical Boussinesq approximation is invoked for the buoyancy

inducted body force term in the momentum equation. The 2-D

governing equations are transformed into stream function-vorticity

(Ψ-Ω) formulation and can be written in non-dimensional forms:

5.1. Discretization:

The system of Eqs. (1-4), together with the boundary conditions

Eq. (4a-c) have been discretized and solved using the finite

difference method. For solving nonlinear systems of differential

partial equations, the fourth-order Runge-Kutta method is known

to be quite effective compared to other methods. The convective

terms in Eqs. (1-2) are discretized using the accurate third order

upwind scheme of Kawamura [2] taking into account the sign of

the velocity. A fourth-order centered scheme was adopted for the

discretization of the diffusive terms, the source term in Eq. (2), and

the explicit evaluation of the U and V components of the velocity

vector in Eq. (4).
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