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Highlights

Mathematical Formulation

Our results in 2-D based on t-J Model

» The interesting magnetic behaviour of the low-dimensional strongly-
correlated under-doped guantum antiferroamgnets is manifested in
their unusual properties.

» | have used the strongly correlated t-J model as the basis for the
derivation of generalized spin stiffness constant for these doped systems
In one and two dimension.

» The magnetic behaviour of one dimensional and two dimensional
systems are also quite distinct posing a challenge to the age-old ideas of
the experimentalists and theoreticians.

» The comparison of my derived spin stiffness constant with other
theoretical and experimental results establishes the role of spin stiffness
constant as effective exchange constants in both 1-D and 2-D systems.

» A possible of point of quantum phase transition is seen near 61%
doping concentration considering only the nearest neighbour hopping.

» The possible point of phase transition is shifted to 15% doping
concentration if the hopping involving two more near neighbours are
considered. This is the region where the T, Is maximum for these high
temperature superconductors.

»Our formalism based on the quantum mechanical approach provides
a straightforward way for calculating effective exchange constant for

Itinerant magnetic systems.

The t-J model has been well established as one of the most important models for
studying the antiferromagnetic doped insulators, which show high temperature
superconductivity at optimal doping concentration. The study of the doped cuprates
using t-J model also reveals the magnetic correlation present in the systems. This
motivated us to investigate the connection of spin stiffness constant with effective
exchange constant and charge stiffness constant with effective Coulomb interaction
of one and two-dimensional antiferromagnets involving the rigorous analytic
calculations on t-J model. The agreement with the previous experimental and
theoretical results on the antiferromagnetic planes of La,CuO,and oxygen deficient
chains of YBa,Cu;0s,, added to the success of our result. The calculation of charge
stiffness constant is going on and will be presented somewhere else in near future.
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Hubbard Model, t-J Model and t-t’-t’’-d Model

The t-J model is a progeny model of the strongly correlated Hubbard model. The
Hubbard model for the strongly correlated electrons consists of a hopping term and
a on site Coulomb repulsion term.

The Hubbard Hamiltonian:-

H= I_Ihop'l- Hint (1)

This Hamiltonian takes the form:

H =—tZC;CjG+Uzni’|‘ni¢ (2)

i,j,.o i

where t is the hopping probability amplitude from one site to another. C.,(C..) is the Fermi
annihilation (creation) operator for an electron at the site i with spin 6, and n,_.= C, . C,, isthe number
of electrons at a site with a given spin. The kinetic term is written in nearest-neighbor approximation for
the transition matrix element, so that in this case the initial-band width W=2zt, where z is the number of
nearest neighbour.

For U>>W, the second order perturbation in W/U gives the t-J model
Hamiltonian for less than half-filled band band as -

H =t Z C;Lnga+JZSi'Sj (3)

For, exactly half-filled band, th<é'1r>1'8pping part i<§'Jz>ero and we get back the well-
known Heisenberg model.

Now, the t-t’-t””-J model is given by:

H=-t3 C,C,t ¥ C.C,-t ¥ C.C,+IXS:S, @

<i,j>o i, j>>,0 <<i, j>>>,0 <i,j>

where ‘t"’and ‘t"”’ are the next-nearest and next-next-nearest neighbour hopping
amplitudes respectively.

The generalized spin stiffness constant is defined as 1:

= : 1. 50°E

Ds = lim 40 (5)5—¢2 (5)
where E(Q) is the total ground state energy in the presence of staggered Peierl s phase
(resembling a magnetic flux) @_, arising from an applied vector potential A(r), such that

N G=-0=0 (6)
D, contains the contribution from both the hopping part ( 6: ) and the exchange
energy part (D? ).

Hence, 63 — 6; + ISJS (7)
The Gutzwiller state with variational parameter (o) set equal to 1 for completely

projecting out the doubly occupied sites in the low doping regions:

Then,
‘LIJG> — H(l_ N+ nw)‘ FS> (8)

Wohooo = [10-nenWITXCLC " hac) (@)

kK,o 1,]

Calculating the expectation values of energies in the normalized Gutzwiller state,
the values of spin stiffness constants for two and one dimensional systems (taking
only the nearest neighbour hopping) are summarized as :

20"

T~ D! =-4J ﬁz(l— 5)? (11)

ISSt = (—t)[lk_F[4cos;(kxa)(1—5)2 — N,lk_F[4cos(an)/ N“] (10)

4D — 0 = COI J4costka)a—0)” — N, ] [4cos(kay/N?] - (12
\ 6; :_4Jﬁ2(1_5)2 (13)

2-Dimension 1-Dimension
6;=0;for Bt — 0 ; for
(i)n>0.39 ie.,5<0.61 s Ii) e e
(i) n—01e.,5—1 (i) n->0 ie.,5->1
|SJ =0 - for ~J
S ) — ;f
(i) NS>0 ie., 551 By =0 pie

(i) n>0ie.,6>1

Our recent calculations considering two next- nearest neighbour hoppings
(t’and t””) along with ‘t’show that the generalized spin stiffness constant in
2-D due to hopping is:

5; = (—t)[lk_F[ 4{cos(k a) + (t'/t) cos(2k,a) + (t''/t) cos(3k, a)}(1— 5)*?

— N, 1&[4{cbs(kxa) + (t'/t) cos(2k,a) + (t"'/t) cos(3k,a)}/ N 2] (14)

The consideration of the next two nearest neighbour hoppings gives the non-zero
expectation values of kinetic energy and D; just above ~15% doping concentration
for proper choice of t" and t”’. This is the possible point of possible phase transition
where the doped insulators show the highest T, (as shown in Fig. (3)).

The total generalized spin stiffness constant due to a pair of mobile holes is:
D, =(D; +D{)/MC, (15)

Previous experimental and theoretical

results in 2-D

Neutron scattering experiment on La,_ Sr,CuO, above the corresponding
Neel temperature gives the 2-D correlation length as function of doping
concentration 2:
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£ =3.8/4/5 (16)

Chakravarty, Halperin and Nelson (CHN) calculated the
correlation length in 2D for pure Quantum Antiferromagnets
using QNLoM at T—0K as *:

Sop = Cg exp[2I1p, /kgT] (17)
where 2np, is the spin wave stiffness constant
The 2-D correlation length for doped antiferromagnets from
Quantum Monte Carlo study °:

Hence,

&, = (0.276a/V1-5) exp[1.253 /T] (18)

J.. ~In(0.075(5/1-5)) (19)

Himeda and Ogata calculated the effective antiferromagnetic
exchange constant by introducing the effects of no double
occupancy in the Gutzwiller factors :

~

i:;ff =0, Jet =0, (20)

_4Q-9)°
 (L-5% +4m?) (21)
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Previous experimental results in 1-D

The susceptibility of YBa,Cu;O,,, was measured by Tranquada et al. by neutron
scattering studies for various values of x’. The doping of oxygen introduces the holes
only in the linear chains of YBa,Cu;Oq,, upto X ~ 0.48. The effective spin stiffness
constant (J.¢) IS given by the inverse of dynamic susceptibility. J« of YBa,Cu;O4,,
can be plotted against the doping concentration as:
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Our results in 1-D based on t-J model
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Conclusion

The good agreement of our analytical results with the previous experimental and
theoretical outcomes in both one and two dimensional systems once again establishes the
paramount importance of t-J model in describing the doped antiferroamgnets39-1°, The
point of possible phase separation obtained nearly at 15% doping concentration
considering next two nearest neighbours has importance in explaining the microscopic
origin of high temperature superconductivity in the doped antiferromagnets in this doping
region. The boundary of phase separation shown by Emery et al. for 2-D
antiferromagnets is also relevant to our resultst. The calculation of stiffness constant
considering next two nearest neighbours is under process for 1-D antiferromagnets.

Moreover, our formalism paves a transparent way for studying the strongly correlated
itinerant magnetic systems in the light of t-J model. The investigation of charge stiffness
along with the spin stiffness can shed light on the pairing mechanism in these high
temperature superconductors in the near future.
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