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Motivation

Hubbard Model, t-J Model and t-t’-t’’-J Model

Mathematical Formulation

The generalized spin stiffness constant is defined as 1:

(5)

where E(Ø) is the total ground state energy in the presence of staggered Peierl’s phase 

(resembling a magnetic flux) Øσ , arising from an applied vector potential A(r), such that 

Ø↓= - Ø↑= Ø                                                                (6)

contains the contribution from both the hopping part (      ) and the exchange 

energy part (      ).

Hence,                  (7)

The Gutzwiller state with variational parameter (α) set equal to 1 for completely 

projecting out the doubly occupied sites in the low doping regions:

Then, 

(9)

Calculating the expectation values of energies in the normalized Gutzwiller state,

the values of spin stiffness constants for two and one dimensional systems (taking

only the nearest neighbour hopping) are summarized as 2:

(10)

(11)

(13)

Our recent calculations considering two next- nearest neighbour hoppings

(t’and t’’) along with ‘t’show that the generalized spin stiffness constant in 

2-D due to hopping is:

The consideration of the next two nearest neighbour hoppings gives the non-zero 

expectation values of kinetic energy and      just above ~15% doping concentration 

for proper choice of t’ and t’’. This is the possible point of possible phase transition 

where the doped insulators show the highest Tc (as shown in Fig. (3)).

Previous experimental and theoretical 

results in 2-D

Our results in 2-D based on t-J Model  

Previous experimental results in 1-D

Our results in 1-D based on t-J model

Conclusion
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where ‘t’’and ‘t’’’ are the next-nearest and next-next-nearest neighbour hopping 

amplitudes respectively. 

Structure of La2-xSrxCuO4

Fig.(1)

Structure of YBa2Cu3O6+x
Fig.(2)
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2-Dimension

; for 

(i)n≥0.39 ie.,δ≤0.61

(ii) n→0 ie.,δ→1

; for
(i) n→0 ie.,δ→1

1-Dimension

; for

(i) n=1 ie., δ=0
(ii) n→0 ie.,δ→1

; for
(i) n→0 ie.,δ→1

Neutron scattering experiment on La2-xSrxCuO4 above the corresponding

Neel temperature gives the 2-D correlation length as function of doping

concentration 2:

Magnetic correlation length vs. strontium concentration, δ [Ref.(2),(3)].

Fig.(4)
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Chakravarty, Halperin and Nelson (CHN) calculated the 

correlation length in 2D for pure Quantum Antiferromagnets

using QNL𝜎M at T→0K as 4:

where 2πρs is the spin wave stiffness constant

The 2-D correlation length for doped antiferromagnets from 

Quantum  Monte Carlo study 5:

Hence,

]/2exp[2 TkC BsD   

(16)

]/25.1exp[)1/276.0(2 TJaD  

(17)

))1/(075.0ln(~  effJ

(18)    

(19)

Scaled spin stiffness constant ‘DS’ vs.doping

concentration ‘δ’ plot  upto 5% doping 

concentration with t ~ 8J ; for (a) 100x100,

(b) 128x128, (c) 200x200 lattices [Ref.(2)]
Fig.(5a)

Jeff vs. doping concentration plot using equation (19) 

[Ref.(2)]  

Fig(5b)

Scaled spin stiffness constant ‘Ds’ vs. doping concentration ‘δ’ plot upto 100% doping 

concentration in logscale; for (a) 100x100 ,(b) 128x128 , (c) 200x200 lattices [Ref.(2)]
Fig.(6)
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The susceptibility of YBa2Cu3O6+x was measured by Tranquada et al. by neutron

scattering studies for various values of x7. The doping of oxygen introduces the holes

only in the linear chains of YBa2Cu3O6+x upto x ≈ 0.4 8. The effective spin stiffness

constant (Jeff) is given by the inverse of dynamic susceptibility. Jeff of YBa2Cu3O6+x

can be plotted against the doping concentration as:

‘Jeff’  versus oxygen concentration ‘x’ at low                          

temperature (~60K)
Fig(7)

Scaled spin stiffness constant ‘Ds’versus doping concentration ‘δ’ plot  upto 5% doping 

concentration with t~10J; for (a) 1400, (b) 1600, (c) 1800 lattices
Fig.(8)

Scaled spin stiffness constant versus doping concentration plot  upto 100% doping concentration in 

logscale; for (a) 1400, (b) 1600, (c) 1800 lattices
Fig.(9)

The peak seen here in the 

low doping concentration 

goes in well agreement with 

the presence of a peak in 

the envelope of our plot of 

spin stiffness constant
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Himeda and Ogata calculated the effective antiferromagnetic

exchange constant by introducing the effects of no double 

occupancy in the Gutzwiller factors 6:

(20)

(21)

The good agreement of our analytical results with the previous experimental and

theoretical outcomes in both one and two dimensional systems once again establishes the

paramount importance of t-J model in describing the doped antiferroamgnets3,9-10. The

point of possible phase separation obtained nearly at 15% doping concentration

considering next two nearest neighbours has importance in explaining the microscopic

origin of high temperature superconductivity in the doped antiferromagnets in this doping

region. The boundary of phase separation shown by Emery et al. for 2-D

antiferromagnets is also relevant to our results11. The calculation of stiffness constant

considering next two nearest neighbours is under process for 1-D antiferromagnets.

Moreover, our formalism paves a transparent way for studying the strongly correlated

itinerant magnetic systems in the light of t-J model. The investigation of charge stiffness

along with the spin stiffness can shed light on the pairing mechanism in these high

temperature superconductors in the near future.
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The t-J model has been well established as one of the most important models for

studying the antiferromagnetic doped insulators, which show high temperature

superconductivity at optimal doping concentration. The study of the doped cuprates

using t-J model also reveals the magnetic correlation present in the systems. This

motivated us to investigate the connection of spin stiffness constant with effective

exchange constant and charge stiffness constant with effective Coulomb interaction

of one and two-dimensional antiferromagnets involving the rigorous analytic

calculations on t-J model. The agreement with the previous experimental and

theoretical results on the antiferromagnetic planes of La2CuO4 and oxygen deficient

chains of YBa2Cu3O6+x added to the success of our result. The calculation of charge

stiffness constant is going on and will be presented somewhere else in near future.

Highlights

The interesting magnetic behaviour of the low-dimensional strongly-

correlated under-doped quantum antiferroamgnets is manifested in 

their unusual properties.

 I have used the strongly correlated t-J model as the basis for the 

derivation of generalized spin stiffness constant for these doped systems 

in one and two dimension.

 The magnetic behaviour of one dimensional and two dimensional 

systems are also quite distinct posing a challenge to the age-old ideas of 

the experimentalists and theoreticians.

The comparison of my derived spin stiffness constant with other 

theoretical and experimental results establishes the role of spin stiffness 

constant as effective exchange constants in both 1-D and 2-D systems.

A possible of point of  quantum phase transition is seen near 61% 

doping concentration considering only the nearest neighbour hopping. 

The possible point of phase transition is shifted to 15% doping 

concentration if the hopping involving two more near neighbours are 

considered. This is the region where the Tc is maximum for these high 

temperature superconductors.

Our  formalism based on the quantum mechanical approach provides 

a straightforward way for calculating effective exchange constant for 

itinerant magnetic systems.

The t-J model is a progeny model of the strongly correlated  Hubbard model. The 

Hubbard model for the strongly correlated electrons consists of a hopping term and 

a on site Coulomb repulsion term.

The Hubbard Hamiltonian:-

H = Hhop+ Hint (1)

This Hamiltonian takes the form:

where t is the hopping probability amplitude from one site to another.                    is the Fermi 

annihilation (creation) operator for an electron at the site i with spin σ, and niσ =                is the number 

of electrons at a site with a given spin. The kinetic term is written in nearest-neighbor approximation for 

the transition matrix element, so that in this case the initial-band width W=2zt, where z is the number of 

nearest neighbour.

For U>>W, the second order perturbation in W/U gives the t-J model 

Hamiltonian for less than half-filled band band as -

For, exactly half-filled band, the hopping part is zero and we get back the well-

known Heisenberg model.

Now, the t-t’-t’’-J model is given by: 
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Phase diagram of hole-doped cuprates

Fig.(3)
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