

July 14-15, 2016 Cologne, Germany

Determination of beta radiation dose to thyroid from the ingestion of radioiodine (¹³¹I) by patients for diagnostic and therapeutic purposes

H. Harrass, M.A. Misdaq

Nuclear Physics and Techniques Laboratory, Faculty of Sciences Semlalia, BP.2390, University of Cadi Ayyad, Marrakech, Morocco (URAC-15 Research Unit Associated to the CNRST, Rabat, Morocco)

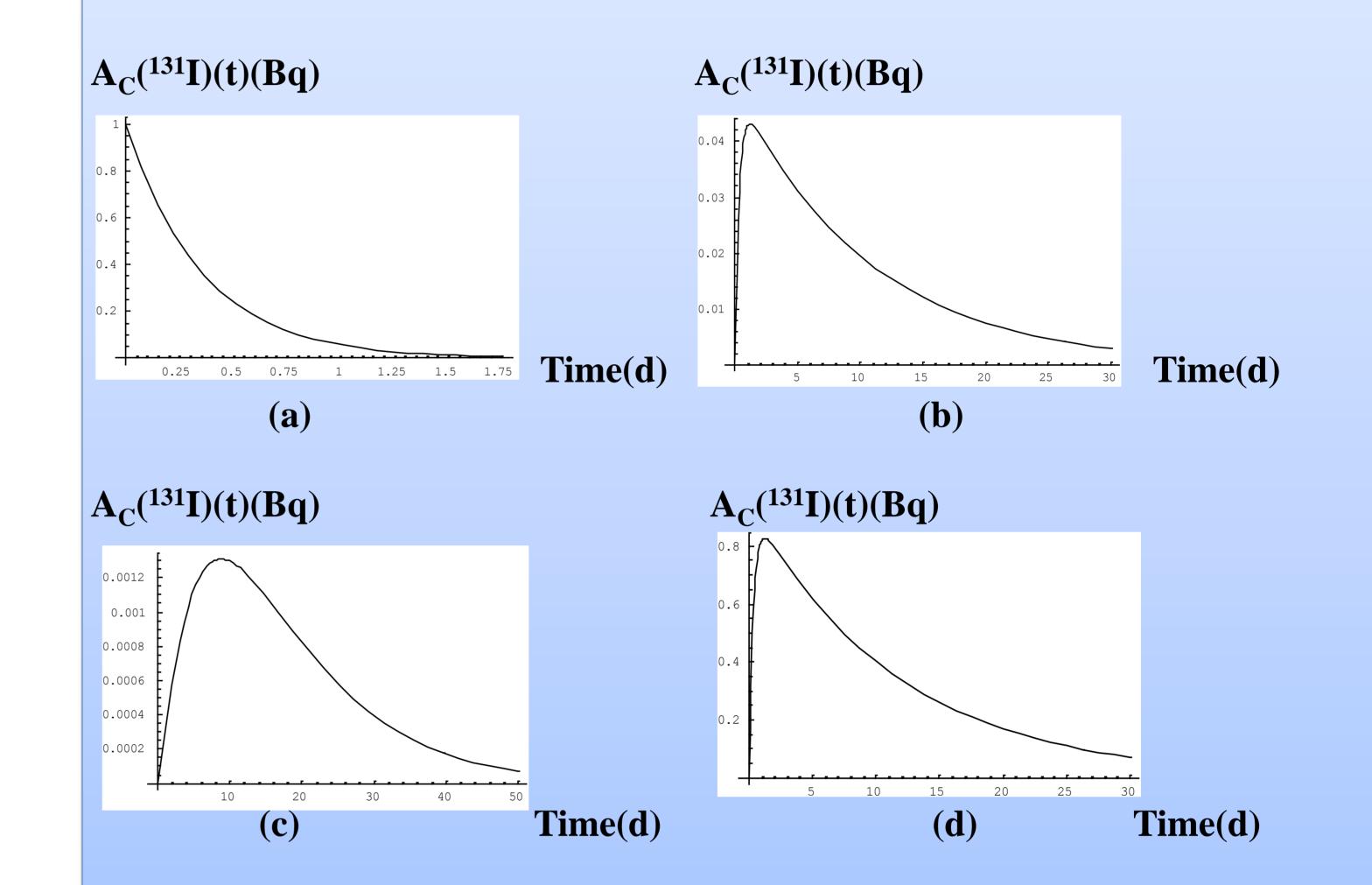
Abstract

Radioactive iodine (¹³¹I) is successfully used for the treatment of hyperthyroidism and thyroid cancer. Thyroid is the critical organ for iodine. Iodine is taken up by the thyroid follicular cells. ¹³¹I simultaneously emits two types of radiation: beta minus particles used for the treatment and gamma rays used for diagnosis. Due to the short range of beta minus particles in tissue, damaging effects of beta radiation is restricted to thyroid cells. Total activities from the ingestion of ¹³¹I were evaluated in different compartments of the human body of patients by using the ICRP biokinetic model for iodine. A new dosimetric model was developed for evaluating committed equivalent doses due to ¹³¹I intakes in the thyroid tissue of different age groups of patients by exploiting data obtained for specific beta-dose deposited by 1Bq of

III. Results and discussion

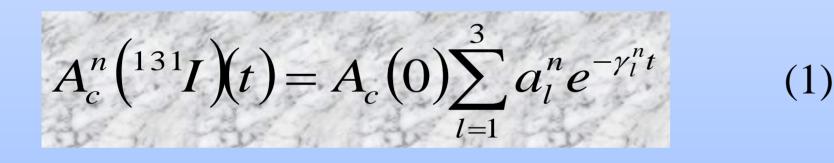
3.1- Total activities determined in different compartments of the human body of patients from the ingestion of ¹³¹I

I. Introduction


Radioiodine ¹³¹I is successfully utilized in nuclear medicine for the treatment of hyperthyroidism and thyroid cancer. This radioisotope emits beta minus particles used for the treatment and gamma photons used for diagnosis. Due to the short range of beta minus particles in tissue, damaging effects of beta radiation is restricted to thyroid cells. Information from the emitted gamma rays are analyzed by a gamma camera coupled to a computer and are transduced in images.

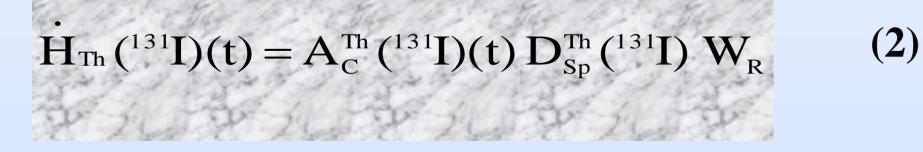
¹³¹I is produced in nuclear reactors by bombarding natural tellurium metal (¹²⁷Te) by neutrons; it disintegrates by emitting β particles with a half-life of 8.04 days to unstable xenon ¹³¹Xe^{*} which decays to stable xenon (¹³¹Xe) by emitting gamma photons of different energies and intensities. ¹³¹I is widely used for diagnostic and therapeutic purposes. For many decades, radioactive iodine was orally administered to patients for the treatment of benign and malignant thyroid diseases. Indeed, a major part of the administered radioiodine will concentrate in the thyroid gland; the emitted β particles of short ranges will only damage thyroid cells without any harmful health effects to the neighboring organ tissues. However, the emitted gamma rays may cause radiation damage to other tissues of the patients and other individuals. There are two types of biological effects of ionizing radiation: deterministic and stochastic effects. Deterministic effects are caused by the decrease in or loss of organ function due to cell damage or cell death. In the case of treatment of thyroid cancer or metastases, hyperthyroidism and goiter, the cell killing effect in some or all cells of the thyroid gland or in the metastases is the desired effect. Other organs should not be affected in such a way that deterministic effects will occur. Therefore beta-emitting ¹³¹I is often the radionuclide chosen for these treatments, although the associated gamma emission exposes also other organs of the patient and other individuals. Stochastic effects are those that result from radiation-induced changes in cells that retain their ability to divide. These modified cells sometimes initiate malignant transformation of a cell, leading to the development of a malignant clone and eventually to a clinically observable cancer.

II. Methods of study


2.1- Determination of activities due to ¹³¹I in different compartments of the human body

In terms of the International Commission on Radiological Protection (ICRP) biokinetic model for iodine [1], one can divide the human body into the following compartments: -The blood (B) Activities due to ¹³¹I were determined in different compartments of the human body of patients from the ingestion of ¹³¹I by using. Variation of the ¹³¹I activity in blood, thyroid, rest of body and urine as functions of time are shown in Fig. 1 for adults for ¹³¹I uptakes=5%, respectively. It is to be noted that the residence time of ¹³¹I in the thyroid and rest of body is higher than that in blood . This is because the transfer rates of ¹³¹I from thyroid to the rest of body and from the rest of body to faeces are lower than that from blood to urine. The retention function for ¹³¹I in thyroid is higher for adult than for 1y children patients, respectively. This is due to the fact that the transfer rate of ¹³¹I from the thyroid to the rest of body is higher for 1y children than for adults . One can note that when the ¹³¹I uptake increases (from 5% to 55%, for instance) for adults and 1y-children the ¹³¹I activity in urine decreases. This is because the transfer rate of ¹³¹I from blood to the urine decreases when the ¹³¹I uptake increases. The presence of ¹³¹I in urine of patients after lower ¹³¹I uptake treatment could represent a source of radiation for their relatives when using common family toilets.

The thyroid (Th)
The rest of body (Rb)
The urine (U)
The faeces (F)


Total activities due to ¹³¹I in the different compartments of the human body are obtained by solving the last differential equation system by using a Maple 8 code providing that at t=0 these activities are equal to zero except that in the blood which is equal to $A_c(0)$. Indeed, for an nth compartment one has:

where $A_c(0)=1$ Bq is the ¹³¹I intake at time t=0, α_l^n is a constant and γ_l^n is a rate constant in d⁻¹.

2.2- A new dosimetric model for evaluating beta-committed equivalent dose due to ¹³¹I in the thyroid gland of patients

Beta-equivalent dose rate (Sv s⁻¹) due to 131 I in the thyroid (Th) of a patient is given by:

Where: $A_{C}^{Th}({}^{13}I)(t)(Bq)$ is the total activity due to ${}^{131}I$ at time t in the thyroid. $D_{Sp}^{Th}({}^{131}I)$ is the specific beta-dose (Gy) deposited by β^{-} particles emitted by 1Bq of ${}^{131}I$ in the thyroid tissue. W_{R} is the radiation weighting factor which is equal to unity for beta- particles. The sepcific beta-dose is given by:

to the set of the

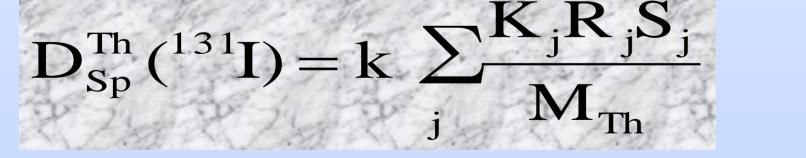
Fig. 1. Variation of the ¹³¹I activity as a function of time in blood (a), thyroid (b), rest of body (c), and urine (d) for adult patients. The ¹³¹I uptake is of 5 %.

3.2. Beta committed equivalent dose to thyroid due to the ingestion of ¹³¹I by patients

In order to test the validity of our dosimetric model committed equivalent doses per unit intake $h_{Th}(^{131}I)$ were determined in the thyroid of various age groups of patients from the ingestion of ^{131}I . Data obtained are shown in Table 1. Considering uncertainties on ranges and stopping powers , the relative uncertainty of the committed equivalent dose is estimated to be about 10%. Data obtained are in good agreement with those obtained by using the ICRP model [2]. $h_{Th}(^{131}I)$ is influenced by the thyroid mass and activity integral (Eq. (4)). It is to be noted from results shown in Table 1 that committed equivalent dose per unit intake to thyroid is clearly higher for children than for adults, for a given ^{131}I uptake. This is because the thyroid mass is predominant (Eq. (4)). Indeed, the ratio of the corresponding highest committed equivalent doses [$h_{Th}(1y)/h_{Th}$ (Adult)] is equal to 10.29 and the ratio of the corresponding thyroid masses [$M_{Th}^{-1}(1y)/M_{Th}^{-1}$ (Adult)] (Eq. (4)) is equal to 11.11, whereas the ratio of the corresponding ^{131}I uptake.

Dose coefficient in thyroid

Patient age group	Dose coefficient in thyroid h _{Th} (¹³¹ I)(µGy/Bq)	
	This method	ICRP dose coeffcient (53)
1 year	0.66±0.07	0.68
5 years	0.36±0.04	0.37
10 years	0.16±0.02	0.17
15 years	0.11±0.01	0.11
Adult female	0.08±0.01	<u></u>
Adult male	0.06±0.01	0.07


Patient age

Patient age group	h _{Th} (¹³¹ I)(μGy/Bq)		
	This method	ICRP dose coeffcient (53)	
1 year	2.0±0.2	2.00	
5 years	1.1±0.1	1.10	
10 years	0.50±0.05	0.51	
15 years	0.34±0.03	0.34	
Adult female	0.24±0.02		
Adult male	0.20±0.02	0.21	
	(b)		

Patient age group	Dose coefficient in thyroid h _{Th} (¹³¹ I)(µGy/Bq)		Patient
	This method	ICRP dose coeffcient (53)	grou
1 year	6.3±0.6	6.10	1 ye
5 years	3.4±0.3	3.30	5 yea
10 years	1.5±0.1	1.50	10 ye
15 years	1.02±0.1	1.00	15 ye
dult female	0.73±0.07		Adult fe
Adult male	0.62±0.06	0.64	Adult r

Patient age group	Dose coefficient in thyroid h _{Th} (¹³¹ I)(µGy/Bq)	
	This method	ICRP dose coeffcient (53)
1 year	3.4±0.3	3.40
5 years	1.8±0.1	1.90
10 years	0.83±0.08	0.84
15 years	0.56±0.06	0.56
Adult female	0.40±0.04	-
Adult male	0.34±0.03	0.36

Patient age group	Dose coefficient in thyroid h _{Th} (¹³¹ I)(µGy/Bq)	
	This method	ICRP dose coeffcient (53)
1 year 💼	7.8±0.8	7.40
5 years	4.3±0.4	4.10
10 years	1.8±0.2	1.90
15 years	1.2±0.1	1.20
Adult female	0.89±0.09	
Adult male	0.76±0.08	0.79

(3)

Where: K_j is the emission percentage of a beta minus particle of index j and average energy E_{β} emitted by ¹³¹I [2]. R_j (cm) is the range of a beta minus particle of index j and average energy E_{β} emitted by ¹³¹I in the thyroid tissue. k=1.6x10⁻¹³ J MeV ⁻¹ is a conversion factor. S_j (MeVcm⁻¹) is the stopping power of the thyroid tissue for a beta minus particle of index j and average energy E_{β} emitted by ¹³¹I. R_j and S_j were determined by using an ESTAR code and the chemical composition of thyroid given by in the ICRP Publication 89 [1]. M_{Th} is the mass (g) of the thyroid.

The beta- committed equivalent dose (Sv) due to 131 I in the thyroid gland is given by:

where τ is the exposure time which is equal to 50 y for adults and to 70 y for children.

References

[1]: The Inetrnational commission on radiological protection. Age-dependent doses to members of the public from intakes of radionuclides. Part1, I CRP publication 56, 1989.

[2]: The Inetrnational commission on radiological protection, Radiation dose to patients from radiopharmaceuticals. ICRP publication 53, 1987.

group	η _{Th} ()(μθγ/bq)		Fatient age		
	This method	ICRP dose coeffcient (53)	group		
1 year	4.8±0.4	4.70	1 year	1000	
5 years	2.6±0.2	2.60	5 years	NK-	
10 years	1.2±0.1	1.20	10 years	3	
15 years	0.79±0.08	0.79	15 years		
Adult female	0.57±0.06	2	Adult female		
Adult male	0.48±0.05	0.50	Adult male		

Dose coefficient in thyroid

(1311)/...C./P

Table 1. Data obtained for the ingestion dose coefficient for ¹³¹I in thyroid ($h_{Th}(^{131}I)$) for different age groups of patients and different ¹³¹I uptakes: 5% (a), 15% (b), 25% (c), 35% (d), 45% (e) and 55% (f), by using this method and the ICRP ingestion dose coefficient [2]

IV. Conclusion

In this study, ¹³¹I activity was calculated in different compartments of the human body of different age groups of patients. It has been shown that the ¹³¹I activity is influenced by the ¹³¹I uptake and transfer rate of ¹³¹I between the different compartments. A new dosimetric model based on the formalism of specific beta dose deposited by 1 Bq of ¹³¹I in the thyroid tissue was developed and validated and beta radiation doses to the thyroid from the ingestion of radioiodine (¹³¹I) by patients for were evaluated. It is concluded that committed equivalent doses to the thyroid gland are influenced by the ¹³¹I uptake, transfer rate of ¹³¹I, mass of thyroid, and energy of the emitted beta minus particles. ¹³¹I uptake was measured for female patients presenting different hyperthyroidism pathologies by using a gamma camera and the resulting committed equivalent doses were determined.